论文标题

深几何纹理合成

Deep Geometric Texture Synthesis

论文作者

Hertz, Amir, Hanocka, Rana, Giryes, Raja, Cohen-Or, Daniel

论文摘要

最近,用于图像产生的深层生成对抗网络已迅速发展。然而,只有少量研究集中于不规则结构,尤其是网格的生成模型。尽管如此,网格生成和合成仍然是计算机图形中的基本话题。在这项工作中,我们提出了一个合成几何纹理的新型框架。它从单个参考3D模型的本地社区(即本地三角贴)中学习几何纹理统计。它在输入三角剖分的面上学习了深层特征,该特征用于细分并在多个尺度上生成偏移,而无需参考或目标网格参数化。我们的网络将网格的顶点朝任何方向(即在正常和切向方向上)取代,从而使几何纹理的合成能够通过简单的2D位移图表示。在局部几何斑块上学习和合成可以实现构成属的框架,从而促进了不同属形状之间的质地转移。

Recently, deep generative adversarial networks for image generation have advanced rapidly; yet, only a small amount of research has focused on generative models for irregular structures, particularly meshes. Nonetheless, mesh generation and synthesis remains a fundamental topic in computer graphics. In this work, we propose a novel framework for synthesizing geometric textures. It learns geometric texture statistics from local neighborhoods (i.e., local triangular patches) of a single reference 3D model. It learns deep features on the faces of the input triangulation, which is used to subdivide and generate offsets across multiple scales, without parameterization of the reference or target mesh. Our network displaces mesh vertices in any direction (i.e., in the normal and tangential direction), enabling synthesis of geometric textures, which cannot be expressed by a simple 2D displacement map. Learning and synthesizing on local geometric patches enables a genus-oblivious framework, facilitating texture transfer between shapes of different genus.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源