论文标题

监测COVID-19大流行期间Twitter上的抑郁趋势

Monitoring Depression Trend on Twitter during the COVID-19 Pandemic

论文作者

Zhang, Yipeng, Lyu, Hanjia, Liu, Yubao, Zhang, Xiyang, Wang, Yu, Luo, Jiebo

论文摘要

199年的大流行严重影响了人们的日常生活,并在全球造成了巨大的经济损失。但是,它对人们心理健康状况的影响并没有得到太多关注。为了研究该主题,我们选择社交媒体作为我们的主要数据资源,并创建了迄今为止最大的英语Twitter抑郁症数据集,其中包含2,575个不同的抑郁症用户,并以其过去的推文而定。为了检查抑郁症对人们Twitter语言的影响,我们在数据集中训练了三个基于变压器的抑郁症分类模型,通过逐渐增加的训练大小来评估其性能,并比较该模型的“ Tweet块” - 级别和用户级别的性能。此外,受到心理研究的启发,我们创建了一个融合分类器,将深度学习模型分数与心理文本特征和用户的人口统计信息结合在一起,并研究这些特征与抑郁信号的关系。最后,我们通过在COVID-19大流行期间介绍其两种应用来展示模型监测群体级别和人口级抑郁趋势的能力。我们希望这项研究能够提高研究人员和公众对Covid-19对人们心理健康的影响的认识。

The COVID-19 pandemic has severely affected people's daily lives and caused tremendous economic loss worldwide. However, its influence on people's mental health conditions has not received as much attention. To study this subject, we choose social media as our main data resource and create by far the largest English Twitter depression dataset containing 2,575 distinct identified depression users with their past tweets. To examine the effect of depression on people's Twitter language, we train three transformer-based depression classification models on the dataset, evaluate their performance with progressively increased training sizes, and compare the model's "tweet chunk"-level and user-level performances. Furthermore, inspired by psychological studies, we create a fusion classifier that combines deep learning model scores with psychological text features and users' demographic information and investigate these features' relations to depression signals. Finally, we demonstrate our model's capability of monitoring both group-level and population-level depression trends by presenting two of its applications during the COVID-19 pandemic. We hope this study can raise awareness among researchers and the general public of COVID-19's impact on people's mental health.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源