论文标题
Opers和Nonabelian Hodge:数字研究
Opers and nonabelian Hodge: numerical studies
论文作者
论文摘要
我们提出了数值实验,以测试有关Opers的单莫尔莫尔(Monodrome)图,非亚伯式霍奇对应关系以及Hitchin Hitchin的Hyperkähller对Hitchin部分的限制。这些实验是在复杂平面上多项式全态差异的设置中进行的,其中预测以stokes数据和Hitchin公制张量的猜想形式。总体而言,我们的实验结果支持了猜想。
We present numerical experiments that test the predictions of a conjecture of Gaiotto-Moore-Neitzke and Gaiotto concerning the monodromy map for opers, the nonabelian Hodge correspondence, and the restriction of Hitchin's hyperkähler metric to the Hitchin section. These experiments are conducted in the setting of polynomial holomorphic differentials on the complex plane, where the predictions take the form of conjectural formulas for the Stokes data and the Hitchin metric tensor. Overall, the results of our experiments support the conjecture.