论文标题
依赖比例依赖的瑞利 - 泰勒动力学,具有群体理论方法可变的加速度
Scale-dependent Rayleigh-Taylor dynamics with variable acceleration by group theory approach
论文作者
论文摘要
这项工作的重点是瑞利 - 泰勒不稳定性(RTI),由幂律时间依赖性加速驱动。我们回顾了现有的理论方法,应用小组理论方法来解决这个长期存在的问题,并为瑞利 - 泰勒(RT)气泡和RT尖峰的规模依赖动力学产生统一的框架。对于早期线性动力学,我们提供了RTI演化对加速参数和初始条件的依赖性。对于晚期非线性动力学,我们发现了连续的渐近解决方案家族,将界面速度与界面形态和界面剪切直接连接起来,并为常规气泡和奇异的尖峰提供了解决方案,并研究了这些溶液的稳定性。仔细描述了RT家族中特殊非线性溶液的特性,包括关键,泰勒,莱泽 - 拖拉和Atwood溶液。结果表明,最快的Atwood气泡是常规且稳定的,最快的Atwood Spike是单数和不稳定的。展示了RT动力学的本质上是多尺度和界面特征。可以通过将气泡和尖峰的RT相干结构视为具有增长幅度的常驻波,可以理解前者。后者意味着RT流量实际上没有远离界面的流体运动,并且在界面附近具有强烈的流体运动,剪切驱动的涡流结构出现在界面上。我们的理论同意可用的观察结果,并详细阐述了未来研究的广泛基准,并更好地理解了等离子体中RT驱动现象。
This work focuses on Rayleigh-Taylor instability (RTI)driven by acceleration with power-law time-dependence. We review the existing theoretical approaches, apply the group theory approach to solve this long-standing problem, and yield the unified framework for the scale-dependent dynamics of Rayleigh-Taylor (RT) bubbles and RT spikes. For the early-time linear dynamics we provide the dependence of RTI evolution on the acceleration parameters and the initial conditions. For the late-time nonlinear dynamics, we find a continuous family of asymptotic solutions, directly link the interface velocity to the interface morphology and the interfacial shear, derive solutions for the regular bubbles and for the singular spikes, and study stability of these solutions. The properties of special nonlinear solutions in the RT family are scrupulously described, including the critical, the Taylor, the Layzer-drag, and the Atwood solutions. It is shown that the fastest Atwood bubble is regular and stable, and the fastest Atwood spike is singular and unstable. The essentially multi-scale and interfacial character of RT dynamics is demonstrated. The former can be understood by viewing RT coherent structure of bubbles and spikes as a standing wave with the growing amplitude. The latter implies that RT flow has effectively no motion of the fluids away from the interface and has intense motion of the fluids near the interface, with shear-driven vortical structures appearing at the interface. Our theory agrees with available observations, and elaborates extensive benchmarks for future research and for better understanding of RT driven phenomena in plasmas.