论文标题
DEEPOPF:可行性优化的深神网络方法,用于交流最佳功率流问题
DeepOPF: A Feasibility-Optimized Deep Neural Network Approach for AC Optimal Power Flow Problems
论文作者
论文摘要
可再生能源世代的高百分比渗透对电力系统带来了重大的不确定性。它要求网格运营商更频繁地解决替代电流最佳功率流(AC-OPF)问题,以便在传输和分配网格中进行经济和可靠的操作。在本文中,我们开发了一种Deep神经网络(DNN)方法,称为DEEPOPF,用于在传统求解器使用的时间中求解AC-OPF问题。应用机器学习技术解决AC-OPF问题的关键困难在于确保获得的解决方案尊重平等和不平等的物理和操作约束。在[1],[2]中概括了2阶段的过程,DEEPOPF首先训练DNN模型,以预测一组独立的操作变量,然后通过求解功率流程来直接计算剩余的可靠性变量。这种方法不仅保留了电流平衡平等的约束,而且还减少了DNN预测的变量数量,从而减少了所需的神经元和训练数据的数量。然后,DeePOPF在培训过程中采用零级梯度估计技术采用惩罚方法,以保留其余的不平等约束。作为另一个贡献,我们根据所需的近似准确性来驱动调整DNN大小的条件,该准确性测量了DNN的概括能力。它为使用DNN解决AC-OPF问题提供了理论上的理由。 IEEE 30/118/300-BU的仿真结果和合成的2000总线测试用例表明,与最先进的求解器相比,DEEPOPF的计算时间最多增加了两个数量级,而费用为$ 0.1%。
High percentage penetrations of renewable energy generations introduce significant uncertainty into power systems. It requires grid operators to solve alternative current optimal power flow (AC-OPF) problems more frequently for economical and reliable operation in both transmission and distribution grids. In this paper, we develop a Deep Neural Network (DNN) approach, called DeepOPF, for solving AC-OPF problems in a fraction of the time used by conventional solvers. A key difficulty for applying machine learning techniques for solving AC-OPF problems lies in ensuring that the obtained solutions respect the equality and inequality physical and operational constraints. Generalized the 2-stage procedure in [1], [2], DeepOPF first trains a DNN model to predict a set of independent operating variables and then directly compute the remaining dependable ones by solving power flow equations. Such an approach not only preserves the power-flow balance equality constraints but also reduces the number of variables to predict by the DNN, cutting down the number of neurons and training data needed. DeepOPF then employs a penalty approach with a zero-order gradient estimation technique in the training process to preserve the remaining inequality constraints. As another contribution, we drive a condition for tuning the size of the DNN according to the desired approximation accuracy, which measures the DNN generalization capability. It provides theoretical justification for using DNN to solve the AC-OPF problem. Simulation results of IEEE 30/118/300-bus and a synthetic 2000-bus test cases show that DeepOPF speeds up the computing time by up to two orders of magnitude as compared to a state-of-the-art solver, at the expense of $<$0.1% cost difference.