论文标题

波光塑料辅助频谱拆分器和太阳能集中器的设计:拼接

Wavefront shaping assisted design of spectral splitters and solar concentrators: SpliCons

论文作者

Gün, Berk Nezir, Yüce, Emre

论文摘要

光谱拆分器以及太阳集合器通常是使用数值方法设计和优化的。在这里,我们提出了一种实验方法,可以通过波前塑形来分裂和浓缩宽带光(420 nm -875 nm)。我们设法使用仅相位空间光调制器在空间上控制白光。结果,我们能够将三个频带(即红色(560 nm -875 nm),绿色(425 nm -620 nm)和蓝色(420 nm -535 nm))分开并浓缩,将总增强因子为715%。尽管颜色通道之间存在显着的重叠,但我们的频谱分裂比分别为52%,57%和66%,分别为红色,绿色和蓝色通道。我们表明,较高数量的可调节超值像素可确保较高的光谱分裂和浓度。我们提供了将优化的相模式转换为衍射光学元件的方法,该光学元素可以大规模制造和低成本。我们首次引入的实验方法可以实现脊柱的优化和设计,与计算方法相比,$ \ sim $ 300倍。

Spectral splitters, as well as solar concentrators, are commonly designed and optimized using numerical methods. Here, we present an experimental method to spectrally split and concentrate broadband light (420 nm - 875 nm) via wavefront shaping. We manage to spatially control white light using a phase-only spatial light modulator. As a result, we are able to split and concentrate three frequency bands, namely red (560 nm - 875 nm), green (425 nm - 620 nm), and blue (420 nm - 535 nm), to two target spots with a total enhancement factor of 715 %. Despite the significant overlap between the color channels, we obtain spectral splitting ratios as 52 %, 57 %, and 66 % for red, green, and blue channels, respectively. We show that a higher number of adjustable superpixels ensures higher spectral splitting and concentration. We provide the methods to convert an optimized phase pattern into a diffractive optical element that can be fabricated at large scale and low cost. The experimental method that we introduce, for the first time, enables the optimization and design of SpliCons, which is $\sim$ 300 times faster compared to the computational methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源