论文标题
动态图的Laplacian变更点检测
Laplacian Change Point Detection for Dynamic Graphs
论文作者
论文摘要
动态图和时间图是丰富的数据结构,用于对实体之间的复杂关系进行建模。特别是,时间图中的异常检测对于许多现实世界的应用至关重要,例如网络系统中的入侵识别,生态系统扰动的检测和对流行病暴发的检测。在本文中,我们专注于动态图中的变更点检测,并解决与此问题相关的两个主要挑战:i)如何在时间上比较图形快照,ii)如何捕获时间依赖性。为了解决上述挑战,我们提出了拉普拉斯异常检测(LAD),该检测使用每个快照处的图形结构的拉普拉斯矩阵来获得低维嵌入。 LAD通过应用两个滑动窗口来明确模拟短期和长期依赖关系。在合成实验中,LAD的表现优于最先进的方法。我们还在三个真正的动态网络上评估了我们的方法:UCI消息网络,美国参议院共同赞助网络和加拿大账单投票网络。在所有三个数据集中,我们证明我们的方法可以根据重大的现实世界事件更有效地识别异常时间点。
Dynamic and temporal graphs are rich data structures that are used to model complex relationships between entities over time. In particular, anomaly detection in temporal graphs is crucial for many real world applications such as intrusion identification in network systems, detection of ecosystem disturbances and detection of epidemic outbreaks. In this paper, we focus on change point detection in dynamic graphs and address two main challenges associated with this problem: I) how to compare graph snapshots across time, II) how to capture temporal dependencies. To solve the above challenges, we propose Laplacian Anomaly Detection (LAD) which uses the spectrum of the Laplacian matrix of the graph structure at each snapshot to obtain low dimensional embeddings. LAD explicitly models short term and long term dependencies by applying two sliding windows. In synthetic experiments, LAD outperforms the state-of-the-art method. We also evaluate our method on three real dynamic networks: UCI message network, US senate co-sponsorship network and Canadian bill voting network. In all three datasets, we demonstrate that our method can more effectively identify anomalous time points according to significant real world events.