论文标题

Vera C. Rubin天文台时代的机器学习对天文瞬变的统计表征和分类

Statistical characterization and classification of astronomical transients with Machine Learning in the era of the Vera C. Rubin Observatory

论文作者

Vicedomini, M., Brescia, M., Cavuoti, S., Longo, G., Riccio, G.

论文摘要

天文学进入了多门使数据时代,机器学习发现在各种应用程序中广泛使用。诸如LSST(时空的传统调查)之类的天气(多波段和多上述)调查的开发需要广泛使用自动方法来进行数据处理和解释。随着PETABYTE域中的数据量,对时间关键信息的歧视已经超过了人类运营商和科学家人群的能力,难以管理多维域中的此类数据。这项工作的重点是对基于机器学习,可变天空分类的方法相关的关键方面的分析,并特别关心各种类型的超新星,这是时间领域天文学最重要的主题之一,由于它们在宇宙学中的关键作用。这项工作基于对模拟数据进行的测试活动。分类是通过比较从光曲线提取的统计参数的几种机器学习算法中的性能进行的。结果证明了与数据质量及其参数空间表征相关的一些关键方面,这是为了准备在即将到来的十年中为真实数据开发的处理机械准备。

Astronomy has entered the multi-messenger data era and Machine Learning has found widespread use in a large variety of applications. The exploitation of synoptic (multi-band and multi-epoch) surveys, like LSST (Legacy Survey of Space and Time), requires an extensive use of automatic methods for data processing and interpretation. With data volumes in the petabyte domain, the discrimination of time-critical information has already exceeded the capabilities of human operators and crowds of scientists have extreme difficulty to manage such amounts of data in multi-dimensional domains. This work is focused on an analysis of critical aspects related to the approach, based on Machine Learning, to variable sky sources classification, with special care to the various types of Supernovae, one of the most important subjects of Time Domain Astronomy, due to their crucial role in Cosmology. The work is based on a test campaign performed on simulated data. The classification was carried out by comparing the performances among several Machine Learning algorithms on statistical parameters extracted from the light curves. The results make in evidence some critical aspects related to the data quality and their parameter space characterization, propaedeutic to the preparation of processing machinery for the real data exploitation in the incoming decade.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源