论文标题

用核心@壳粒子指导近红外光子传输

Directing Near-Infrared Photon Transport with Core@Shell Particles

论文作者

Conley, Kevin M., Thakore, Vaibhav, Seyedheydari, Fahime, Karttunen, Mikko, Ala-Nissila, Tapio

论文摘要

指导近红外辐射的传播是提高太阳能电池和热绝缘子效率的主要问题。一种在没有过多加热的近红外区域散射光线的便利方法是将紧凑的层嵌入具有半导体颗粒的层。半导体@氧化物(core@shell)球形粒子(包含SI,INP,TIO $ _2 $,SIO $ _2 $或ZRO $ _2 $)的定向散射,总半径从0.1到4.0μm,在低体积分数中使用Lorenz-Mie Trimessy and Multisce andisce andisce and Insisce and Insisce and Insisce and Insisting Medimate。每个层的光学响应是在阳光下通过1180 K的辐射来计算的。在200μm厚的紧凑型层中,近红外太阳能和黑体辐射的反射效率因子最高为83.7%和63.9%,仅1%的裸露SI粒子的裸露层,裸露的SI粒子的裸露效率为0.23μmmm和0.50°MM,而仅1%的裸露SI粒子。含有INP颗粒的层的最大太阳和黑体效率因子略低(半径为0.25μm和0.60μm的裸粒子为80.2%和60.7%)。氧化物涂层的添加会修饰周围的介电环境,该环境将太阳反射效率因子提高到90%以上,只要它与入射光谱密度匹配散射模式。这些层对频谱敏感,可以用作太阳能设备,高温热绝缘子和梯度热通量传感器中的光滤器的后反射器或前反射器,以用于消防安全应用。

Directing the propagation of near-infrared radiation is a major concern in improving the efficiency of solar cells and thermal insulators. A facile approach to scatter light in the near-infrared region without excessive heating is to embed compact layers with semiconductor particles. The directional scattering by semiconductor@oxide (core@shell) spherical particles (containing Si, InP, TiO$_2$, SiO$_2$, or ZrO$_2$) with a total radius varying from 0.1 to 4.0 μm and in an insulating medium at low volume fraction is investigated using Lorenz-Mie theory and multiscale modelling. The optical response of each layers is calculated under irradiation by the sun or a blackbody emitter at 1180 K. Reflectance efficiency factors of up to 83.7% and 63.9% are achieved for near-infrared solar and blackbody radiation in 200 μm thick compact layers with only 1% volume fraction of bare Si particles with a radius of 0.23 μm and 0.50 μm, respectively. The maximum solar and blackbody efficiency factors of layers containing InP particles was slightly less (80.2% and 60.7% for bare particles with a radius of 0.25 μm and 0.60 μm, respectively). The addition of an oxide coating modifies the surrounding dielectric environment, which improves the solar reflectance efficiency factor to over 90% provided it matches the scattering mode energies with the incident spectral density. The layers are spectrally-sensitive and can be applied as a back or front reflector for solar devices, high temperature thermal insulators, and optical filters in Gradient Heat Flux Sensors for fire safety applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源