论文标题
非线性schrodinger方程的自适应多解决超促进的不连续的盖尔金方法
An adaptive multiresolution ultra-weak discontinuous Galerkin method for nonlinear Schrodinger equations
论文作者
论文摘要
本文开发了一种用于求解非线性Schrodinger方程的高阶自适应方案。这些方程式的解决方案经常表现出孤立的波和局部结构,这使得适应性在提高模拟效率方面必不可少。我们的方案使用超湿的不连续的盖尔金(DG)公式,属于自适应多种解决方案方案的框架。提出了各种数值实验,以证明捕获孤子波和爆炸现象具有出色的能力。
This paper develops a high order adaptive scheme for solving nonlinear Schrodinger equations. The solutions to such equations often exhibit solitary wave and local structures, which makes adaptivity essential in improving the simulation efficiency. Our scheme uses the ultra-weak discontinuous Galerkin (DG) formulation and belongs to the framework of adaptive multiresolution schemes. Various numerical experiments are presented to demonstrate the excellent capability of capturing the soliton waves and the blow-up phenomenon.