论文标题
ODE-CNN:全向深度扩展网络
ODE-CNN: Omnidirectional Depth Extension Networks
论文作者
论文摘要
全向360°摄像机可迅速增殖,因为它通过扩大视野(FOV)可以显着增强感知能力。但是,相应的360°深度传感器对于感知系统也至关重要,仍然很难或昂贵。在本文中,我们提出了一个低成本的3D传感系统,该系统将全向相机与校准的投影深度摄像头结合在一起,其中有限FOV的深度可以自动扩展到记录的全向图像的其余部分。为了准确恢复缺失的深度,我们设计了全向深度扩展卷积神经网络(ODE-CNN),其中在特征编码层的末尾嵌入了球形特征变换层(SFTL),并且在功能上的卷积空间繁殖网络(DCSSPN)的末端是在功能范围的末端。前者将每个像素的邻域在全向协调中的邻域重新示为投影协调,从而减少了特征学习的难度,后来的自动环境可以通过CNN W.R.T.在估计的深度中很好地对齐结构。参考图像可显着提高视觉质量。最后,我们证明了所提出的ODE-CNN对流行的360D数据集的有效性,并表明ODE-CNN的表现显着超过了其他最新ART(SOTA)方法(相对降低33%)。
Omnidirectional 360° camera proliferates rapidly for autonomous robots since it significantly enhances the perception ability by widening the field of view(FoV). However, corresponding 360° depth sensors, which are also critical for the perception system, are still difficult or expensive to have. In this paper, we propose a low-cost 3D sensing system that combines an omnidirectional camera with a calibrated projective depth camera, where the depth from the limited FoV can be automatically extended to the rest of the recorded omnidirectional image. To accurately recover the missing depths, we design an omnidirectional depth extension convolutional neural network(ODE-CNN), in which a spherical feature transform layer(SFTL) is embedded at the end of feature encoding layers, and a deformable convolutional spatial propagation network(D-CSPN) is appended at the end of feature decoding layers. The former resamples the neighborhood of each pixel in the omnidirectional coordination to the projective coordination, which reduces the difficulty of feature learning, and the later automatically finds a proper context to well align the structures in the estimated depths via CNN w.r.t. the reference image, which significantly improves the visual quality. Finally, we demonstrate the effectiveness of proposed ODE-CNN over the popular 360D dataset and show that ODE-CNN significantly outperforms (relatively 33% reduction in-depth error) other state-of-the-art (SoTA) methods.