论文标题
在小涡流核能上2D XY模型中自旋波和涡流的相互作用
Interplay of spin waves and vortices in the 2D XY model at small vortex-core energy
论文作者
论文摘要
Berezinskii-Kosterlitz-Thouless(BKT)机制描述了许多二维系统(包括范式XY模型)中的通用涡流。但是,这些系统中的大多数在不同的长度尺度上的激发之间存在复杂的相互作用,这使非近亲热力学量的理论计算复杂化。可以通过适当修改BKT流程方程的初始条件来解决这些困难,以说明小长度尺度的非临界波动。在这项工作中,我们通过为BKT流量构建优化的初始条件,对这种两步方法的有效性和限制进行系统研究。我们发现,两步方法可以准确地重现传统XY模型的蒙特卡罗模拟结果。为了系统地研究涡旋和自旋波激发之间的相互作用,我们引入了一种修饰的XY模型,具有增加的涡流散发性。我们提供了该修改后的XY模型的旋转刚度和涡旋密度的大规模蒙特卡洛模拟,并表明即使在巨大的涡旋散发性下,涡旋脱节也可以由非驾驶函数肾效率型组准确地描述。
The Berezinskii-Kosterlitz-Thouless (BKT) mechanism describes universal vortex unbinding in many two-dimensional systems, including the paradigmatic XY model. However, most of these systems present a complex interplay between excitations at different length scales that complicates theoretical calculations of nonuniversal thermodynamic quantities. These difficulties may be overcome by suitably modifying the initial conditions of the BKT flow equations to account for noncritical fluctuations at small length scales. In this work, we perform a systematic study of the validity and limits of this two-step approach by constructing optimised initial conditions for the BKT flow. We find that the two-step approach can accurately reproduce the results of Monte-Carlo simulations of the traditional XY model. In order to systematically study the interplay between vortices and spin-wave excitations, we introduce a modified XY model with increased vortex fugacity. We present large-scale Monte-Carlo simulations of the spin stiffness and vortex density for this modified XY model and show that even at large vortex fugacity, vortex unbinding is accurately described by the nonperturbative functional renormalisation group.