论文标题
用Meerkat的HI强度映射:1/F噪声分析
HI intensity mapping with MeerKAT: 1/f noise analysis
论文作者
论文摘要
单盘射电望远镜的时间相关性噪声分量(1/F噪声)的性质对于在强度映射实验中HI信号的可检测性至关重要。在本文中,我们使用South Celestial Pole(SCP)跟踪数据介绍Meerkat接收器系统的1/F噪声属性。我们估计每个天线和极化的时间功率密度和2D功率谱密度。我们将单数值分解(SVD)应用于数据集,并表明,通过删除最强的组件,可以大大降低1/F噪声,表明它在频率上高度相关。如果没有SVD模式减法,$ 20 \的膝盖频率高于$ MHz的集成高于$ 0.1 \,\ rm Hz $;只需$ 2 $〜模式减法,膝盖频率被降低至$ \ sim 3 \ times 10^{ - 3} \,{\ rm Hz} $,表明在几百秒时间内,系统诱导的1/f型变化在热噪声波动下是很好的。 2D功率谱显示,1/F型变化仅限于时频空间中的一个小区域,频率的长波长相关性或时间为较长。这给出了广泛的宇宙学量表,其中可以测量21cm信号,而无需校准增益时间波动。最后,我们证明了一个简单的功率谱参数化足以描述数据并为1D和2D功率谱提供拟合参数。
The nature of the time correlated noise component (the 1/f noise) of single dish radio telescopes is critical to the detectability of the HI signal in intensity mapping experiments. In this paper, we present the 1/f noise properties of the MeerKAT receiver system using South Celestial Pole (SCP) tracking data. We estimate both the temporal power spectrum density and the 2D power spectrum density for each of the antennas and polarizations. We apply Singular Value Decomposition (SVD) to the dataset and show that, by removing the strongest components, the 1/f noise can be drastically reduced, indicating that it is highly correlated in frequency. Without SVD mode subtraction, the knee frequency over a $20\,$MHz integration is higher than $0.1\,\rm Hz$; with just $2$~mode subtraction, the knee frequency is reduced to $\sim 3\times 10^{-3}\,{\rm Hz}$, indicating that the system induced 1/f-type variations are well under the thermal noise fluctuations over a few hundred seconds time scales. The 2D power spectrum shows that the 1/f-type variations are restricted to a small region in the time-frequency space, either with long wavelength correlations in frequency or in time. This gives a wide range of cosmological scales where the 21cm signal can be measured without further need to calibrate the gain time fluctuations. Finally, we demonstrate that a simple power spectrum parameterization is sufficient to describe the data and provide fitting parameters for both the 1D and 2D power spectrum.