论文标题
纠缠汉密尔顿的非关键量子链
Entanglement Hamiltonians for non-critical quantum chains
论文作者
论文摘要
我们研究了两个不同的自由粒子系统的无限量子链的有限量间隔:耦合的谐波振荡器和带有二聚化的费米子跳跃模型。纠缠汉密尔顿人在基态下工作,再次描述了自由玻色子或费米子,并通过高精度数字从相关函数获得多达数百个地点。远离关键性,主要的现场和最接近的纽布术语具有三角形特征,可以从分析结果中以半限定的间隔来理解。几乎关键的是,远程耦合虽然很小,但却导致了更复杂的图片。还报道了确切的光谱和纠缠熵与哈密顿量中主要术语所产生的比较。
We study the entanglement Hamiltonian for finite intervals in infinite quantum chains for two different free-particle systems: coupled harmonic oscillators and fermionic hopping models with dimerization. Working in the ground state, the entanglement Hamiltonian describes again free bosons or fermions and is obtained from the correlation functions via high-precision numerics for up to several hundred sites. Far away from criticality, the dominant on-site and nearest-neighbour terms have triangular profiles that can be understood from the analytical results for a half-infinite interval. Near criticality, the longer-range couplings, although small, lead to a more complex picture. A comparison between the exact spectra and entanglement entropies and those resulting from the dominant terms in the Hamiltonian is also reported.