论文标题
nilpotent $ \ mathfrak {cd} $ - 代数的几何分类
The geometric classification of nilpotent $\mathfrak{CD}$-algebras
论文作者
论文摘要
我们给出了复杂$ 4 $二维nilpotent $ \ mathfrak {cd} $ - 代数的几何分类。相应的几何变量具有尺寸18,并分解为$ 2 $的不可约组件,由两参数的代数代数和四参数代数代数的Zariski闭合确定(请参见定理2)。特别是,没有僵化的$ 4 $二维复杂的nilpotent $ \ mathfrak {cd} $ - 代数。
We give a geometric classification of complex $4$-dimensional nilpotent $\mathfrak{CD}$-algebras. The corresponding geometric variety has dimension 18 and decomposes into $2$ irreducible components determined by the Zariski closures of a two-parameter family of algebras and a four-parameter family of algebras (see Theorem 2). In particular, there are no rigid $4$-dimensional complex nilpotent $\mathfrak{CD}$-algebras.