论文标题

大型旋转互连的低对称性拓扑材料:过渡金属二甲基化元素单层的情况

Low-symmetry topological materials for large charge-to-spin interconversion: The case of transition metal dichalcogenide monolayers

论文作者

Vila, Marc, Hsu, Chuang-Han, Garcia, Jose H., Benítez, L. Antonio, Waintal, Xavier, Valenzuela, Sergio, Pereira, Vitor M., Roche, Stephan

论文摘要

由薄膜中的自旋霍尔效应(SHE)引起的自旋极化通常从平面上指出。这根源于传统研究系统的特定对称性,而不是基本的约束。最近,对几层$ {\ rm mote} _2 $和$ {\ rm wte} _2 $进行实验表明,这些强的自旋轨道耦合材料的对称性减少了,可以使{\ it canted}的新形式具有与同一式内置式旋转式旋转式旋转式旋转式旋转效果,其特征是式式旋转旋转和型号的旋转偏光层。在这里,通过对现实设备几何形状的量子传输计算,包括混乱,我们预测了一个非常大的登机口ni $λ_sθ_{xy} \ sim 1 \ sim 1 \ text { - } 50 $ nm in $ {\ rm mote} _2 $ and $ {\ rm mote} _2 $ and $ {\ rm wte} _2 $ monolays _2 $ monolays profceptials factor semails以外的材料。这源于并发的长旋转扩散长度($λ_s$)和旋转的旋转互转效效率,分别来自动量不变(持续的)旋转纹理,分别沿Fermi Comerour,大约是$θ_{xy} \约80 $ \%。提出了对其他材料和明确实验确认的特定指南的概括,为在Spintronic设备中利用这种现象的方式铺平了道路。这些发现生动地强调了晶体对称性和电子拓扑如何控制她的内在性和自旋松弛,以及如何利用它们来扩大自旋材料和功能的范围和效率。

The spin polarization induced by the spin Hall effect (SHE) in thin films typically points out of the plane. This is rooted on the specific symmetries of traditionally studied systems, not in a fundamental constraint. Recently, experiments on few-layer ${\rm MoTe}_2$ and ${\rm WTe}_2$ showed that the reduced symmetry of these strong spin-orbit coupling materials enables a new form of {\it canted} spin Hall effect, characterized by concurrent in-plane and out-of-plane spin polarizations. Here, through quantum transport calculations on realistic device geometries, including disorder, we predict a very large gate-tunable SHE figure of merit $λ_sθ_{xy}\sim 1\text{--}50$ nm in ${\rm MoTe}_2$ and ${\rm WTe}_2$ monolayers that significantly exceeds values of conventional SHE materials. This stems from a concurrent long spin diffusion length ($λ_s$) and charge-to-spin interconversion efficiency as large as $θ_{xy} \approx 80$\%, originating from momentum-invariant (persistent) spin textures together with large spin Berry curvature along the Fermi contour, respectively. Generalization to other materials and specific guidelines for unambiguous experimental confirmation are proposed, paving the way towards exploiting such phenomena in spintronic devices. These findings vividly emphasize how crystal symmetry and electronic topology can govern the intrinsic SHE and spin relaxation, and how they may be exploited to broaden the range and efficiency of spintronic materials and functionalities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源