论文标题

通过相切包装的流量来证明Koebe-Andre'ev-Thurston定理

A proof of the Koebe-Andre'ev-Thurston theorem via flow from tangency packings

论文作者

Bowers, John C.

论文摘要

最近,康纳利(Connelly)和戈特勒(Gortler)通过引入混合组合组合的几何操作Flip-Flow提供了一个新颖的证明,以进行切线包装,以进行切线包装,这允许两个相切的封装,其触点图因组合边缘的触点而异,在维持所有常见的范围内都会从另一个角度进行连续变形。从具有所需数量的圆的规范切线圆填料开始,可以应用有限的翻转和流动操作序列,以获取具有相同数量的圆圈数量的任何所需(适当)触点图的圆圈。 在本文中,我们扩展了Connelly-Gortler方法,使圆圈的角度最高为$π/2 $。结果,我们获得了$ \ mathbb {s}^2 $的磁盘包装的一般koebe-andre'ev-thurston定理的新证明,并带有重叠的磁盘和用于计算它们的数值算法。我们的开发利用了$ \ mathbb {s}^2 $上的圆圈和磁盘之间的对应关系,以及在4维Minkowski SpaceTime $ \ Mathbb {r}^{1,3} $中,我们在初步部分中阐明了圆形和半空间。使用此视图,我们概括了圆聚类的凸概念,该概念最近被用来证明某些圆形包装的全局刚度。最后,我们使用这种观点来表明所有凸圈多面体都是无限的刚性,从而推广了最近的相关结果。

Recently, Connelly and Gortler gave a novel proof of the circle packing theorem for tangency packings by introducing a hybrid combinatorial-geometric operation, flip-and-flow, that allows two tangency packings whose contact graphs differ by a combinatorial edge flip to be continuously deformed from one to the other while maintaining tangencies across all of their common edges. Starting from a canonical tangency circle packing with the desired number of circles a finite sequence of flip-and-flow operations may be applied to obtain a circle packing for any desired (proper) contact graph with the same number of circles. In this paper, we extend the Connelly-Gortler method to allow circles to overlap by angles up to $π/2$. As a result, we obtain a new proof of the general Koebe-Andre'ev-Thurston theorem for disk packings on $\mathbb{S}^2$ with overlaps and a numerical algorithm for computing them. Our development makes use of the correspondence between circles and disks on $\mathbb{S}^2$ and hyperplanes and half-spaces in the 4-dimensional Minkowski spacetime $\mathbb{R}^{1,3}$, which we illuminate in a preliminary section. Using this view we generalize a notion of convexity of circle polyhedra that has recently been used to prove the global rigidity of certain circle packings. Finally, we use this view to show that all convex circle polyhedra are infinitesimally rigid, generalizing a recent related result.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源