论文标题
Hochschild同源性和衍生的De Rham Complex进行了重新审视
Hochschild homology and the derived de Rham complex revisited
论文作者
论文摘要
我们通过通用属性来表征两个对象:派生的de rham复合物和Hochschild同源性以及其Hochschild-Kostant-Rosenberg过滤。这涉及将这些物体具有额外的结构,并建立在我们在这里研究的“同拷贝辅助象chain复合物”和“过滤圆圈动作”的概念。我们使用这些通用特性给出了与Hochschild同源性和衍生的De Rham复合物有关的陈述的概念证明,特别是给出了有关循环,负环和周期性周期性同源性过滤的新结构,这些过滤将这些不变性与派生的DE RHAM共同体相关联。
We characterize two objects by universal property: the derived de Rham complex and Hochschild homology together with its Hochschild-Kostant-Rosenberg filtration. This involves endowing these objects with extra structure, built on notions of "homotopy-coherent cochain complex" and "filtered circle action" that we study here. We use these universal properties to give a conceptual proof of the statements relating Hochschild homology and the derived de Rham complex, in particular giving a new construction of the filtrations on cyclic, negative cyclic, and periodic cyclic homology that relate these invariants to derived de Rham cohomology.