论文标题

Levinger定理中频谱半径的非conemavity

Nonconcavity of the Spectral Radius in Levinger's Theorem

论文作者

Altenberg, Lee, Cohen, Joel E.

论文摘要

令$ {\ bf a} \ in r^{n \ times n} $为不可不可约的方形矩阵,让$ r({\ bf a})$为其频谱半径和perron-frobenius eigenvalue。 Levinger断言,有几个事实证明,$ r(t):= r(((1 { - } t){\ bf a} + t {\ bf a}^\ top)$增加了[0,1/2] $的$ t \ in [0,1/2] $,并且在[1/2,1] $中$ t \ in [0,1/2] $。进一步指出,$ r(t)$超过$ t \ in(0,1)$。 Here we show that the latter claim is false in general through a number of counterexamples, but prove it is true for ${\bf A} \in R^{2\times 2}$, weighted shift matrices (but not cyclic weighted shift matrices), tridiagonal Toeplitz matrices, and the 3-parameter Toeplitz matrices from Fiedler, but not Toeplitz矩阵一般。 $ t $或矩阵类别的范围的一般表征,光谱半径在Levinger的同型中是凹面的,仍然是一个空旷的问题。

Let ${\bf A} \in R^{n \times n}$ be a nonnegative irreducible square matrix and let $r({\bf A})$ be its spectral radius and Perron-Frobenius eigenvalue. Levinger asserted and several have proven that $r(t):=r((1{-}t) {\bf A} + t {\bf A}^\top)$ increases over $t \in [0,1/2]$ and decreases over $t \in [1/2,1]$. It has further been stated that $r(t)$ is concave over $t \in (0,1)$. Here we show that the latter claim is false in general through a number of counterexamples, but prove it is true for ${\bf A} \in R^{2\times 2}$, weighted shift matrices (but not cyclic weighted shift matrices), tridiagonal Toeplitz matrices, and the 3-parameter Toeplitz matrices from Fiedler, but not Toeplitz matrices in general. A general characterization of the range of $t$, or the class of matrices, for which the spectral radius is concave in Levinger's homotopy remains an open problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源