论文标题

关于有限级近似值的正确性按一系列转移的高斯人

On the correctness of finite-rank approximations by series of shifted Gaussians

论文作者

Sitnik, S. M., Timashov, A. S., Ushakov, S. N.

论文摘要

在本文中,我们考虑了与高斯人的整数变化有关的插值问题。这些问题的已知方法遇到了数值困难。因此,基于线性系统的有限级近似值考虑了另一种方法。这种方法的主要结果是确定正在考虑的有限级线性系统的正确性。本文的主要结果是证明有限级线性系统近似的正确性。因为这是线性系统的主要决定因素的明确公式,以证明其非零。

In this paper we consider interpolation problem connected with series by integer shifts of Gaussians. Known approaches for these problems met numerical difficulties. Due to it another method is considered based on finite-rank approximations by linear systems. The main result for this approach is to establish correctness of the finite-rank linear system under consideration. And the main result of the paper is to prove correctness of the finite-rank linear system approximation. For that an explicit formula for the main determinant of the linear system is derived to demonstrate that it is non-zero.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源