论文标题

非高斯组件分析:测试信号子空间的尺寸

Non-Gaussian component analysis: testing the dimension of the signal subspace

论文作者

Radojicic, Una, Nordhausen, Klaus

论文摘要

缩小维度是多元数据分析中的常见策略,该策略寻求一个子空间,其中包含后续分析所需的所有有趣功能。非高斯组件分析试图为此目的将数据分为非高斯部分,信号和高斯部分,即噪声。我们将证明可以同时使用两个散点功能来实现此目的,并建议进行自举测试以测试非高斯子空间的维度。然后可以使用测试的顺序应用来估计信号维度。

Dimension reduction is a common strategy in multivariate data analysis which seeks a subspace which contains all interesting features needed for the subsequent analysis. Non-Gaussian component analysis attempts for this purpose to divide the data into a non-Gaussian part, the signal, and a Gaussian part, the noise. We will show that the simultaneous use of two scatter functionals can be used for this purpose and suggest a bootstrap test to test the dimension of the non-Gaussian subspace. Sequential application of the test can then for example be used to estimate the signal dimension.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源