论文标题

不变的阿贝尔群体捕获了巴纳克空间在其第二个偶数中的可补充性

Invariant means on Abelian groups capture complementability of Banach spaces in their second duals

论文作者

Goucher, Adam P., Kania, Tomasz

论文摘要

令$ x $为Banach空间。然后,$ x $在双交易$ x^{**} $中得到补充,并且仅当存在不变的均值$ \ ell_ \ ell_ \ infty(g,x)\ x $相对于免费的Abelian $ g $等级等于$ x^{****} $,并且仅在excant上添加了expariant nyvars,等于$ x^{**} $的基数等级等于$ x^{**} $ $ x^{**} $。考虑到bustos domecq =和第二名作者的先前结果,这有所改善,其中考虑了某些基本的基数等于$ x^{**} $的基数,并回答了J.M.F.的问题。卡斯蒂略(私人通信)。在前往主要结果证明的途中,我们赋予了无限维矢量空间的所有有限维子空间的家族,其结构具有自由交换性的单体结构,其属性具有两个子空间的乘积包含相应的子空间,这本身可能是感兴趣的。

Let $X$ be a Banach space. Then $X$ is complemented in the bidual $X^{**}$ if and only if there exists an invariant mean $\ell_\infty(G, X)\to X$ with respect to a free Abelian group $G$ of rank equal to the cardinality of $X^{**}$, and this happens if and only if there exists an invariant mean with respect to the additive group of $X^{**}$. This improves upon previous results due to Bustos Domecq =and the second-named author, where certain idempotent semigroups of cardinality equal to the cardinality of $X^{**}$ were considered, and answers a question of J.M.F. Castillo (private communication). En route to the proof of the main result, we endow the family of all finite-dimensional subspaces of an infinite-dimensional vector space with a structure of a free commutative monoid with the property that the product of two subspaces contains the respective subspaces, which is possibly of interest in itself.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源