论文标题

使用虚拟现实中生成的基于片段的数据培训原子神经网络

Training atomic neural networks using fragment-based data generated in virtual reality

论文作者

Amabilino, Silvia, Bratholm, Lars A., Bennie, Simon J., O'Connor, Michael B., Glowacki, David R.

论文摘要

理解和设计分子结构的能力依赖于对能量作为原子坐标的函数的准确描述。在这里,我们概述了一个新的范式,用于推导高维分子系统的能量函数,该系统涉及在虚拟现实(VR)中生成低维系统的数据,以便有效地训练原子神经网络(ANNS)。这为特定的高维空间中特定感兴趣领域的特定领域生成了高质量的数据,该领域的特征是分子的势能表面(PES)。我们通过收集VR中的数据来训练ANN就涉及少于8个重原子的化学反应训练ANN来证明这种方法的实用性。该策略使我们能够预测高维系统的能量,例如包含近100个原子。在仅包含15K几何形状的数据集上进行培训,此方法在2 kcal/mol左右产生平均绝对误差。这代表了使用如此小的数据集生成大反应性自由基的ANN-PE的第一次。我们的结果表明,VR实现了高质量数据的智能策划,从而加速了学习过程。

The ability to understand and engineer molecular structures relies on having accurate descriptions of the energy as a function of atomic coordinates. Here we outline a new paradigm for deriving energy functions of hyperdimensional molecular systems, which involves generating data for low-dimensional systems in virtual reality (VR) to then efficiently train atomic neural networks (ANNs). This generates high quality data for specific areas of interest within the hyperdimensional space that characterizes a molecule's potential energy surface (PES). We demonstrate the utility of this approach by gathering data within VR to train ANNs on chemical reactions involving fewer than 8 heavy atoms. This strategy enables us to predict the energies of much higher-dimensional systems, e.g. containing nearly 100 atoms. Training on datasets containing only 15K geometries, this approach generates mean absolute errors around 2 kcal/mol. This represents one of the first times that an ANN-PES for a large reactive radical has been generated using such a small dataset. Our results suggest VR enables the intelligent curation of high-quality data, which accelerates the learning process.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源