论文标题
ta $ _2 $ nise $ _5 $的自发对称性破坏本质上是结构性的
The spontaneous symmetry breaking in Ta$_2$NiSe$_5$ is structural in nature
论文作者
论文摘要
激子绝缘子是电子驱动的物质相,它出现在激发子的自发形成和bose凝结上。在候选材料中检测这种异国情调的顺序是至关重要的,因为带状结构中的激子间隙的大小确定了该集体状态对于超流体能量运输的潜力。但是,在实际固体中对此阶段的识别受到结构顺序参数的共存,其对称性与激子阶相同。目前,只有少数材料可以拥有主要的激子阶段,ta $ _2 $ nise $ _5 $是最有前途的。在这里,我们通过使用超短激光脉冲来测试这种情况,以淬灭该过渡金属果酱的破碎对称阶段。在光激发后跟踪材料的电子和晶体结构的动力学揭示了令人惊讶的光谱指纹,这些指纹仅与声音性质的主要级参数兼容。我们通过最先进的计算合理化了我们的发现,确认结构顺序是大多数电子间隙开放的解释。我们的结果不仅揭示了推动ta $ _2 $ nise $ _5 $的长期过渡的长期机制,而且他们还最终排除了这种不稳定的任何实质性激发特征。
The excitonic insulator is an electronically-driven phase of matter that emerges upon the spontaneous formation and Bose condensation of excitons. Detecting this exotic order in candidate materials is a subject of paramount importance, as the size of the excitonic gap in the band structure establishes the potential of this collective state for superfluid energy transport. However, the identification of this phase in real solids is hindered by the coexistence of a structural order parameter with the same symmetry as the excitonic order. Only a few materials are currently believed to host a dominant excitonic phase, Ta$_2$NiSe$_5$ being the most promising. Here, we test this scenario by using an ultrashort laser pulse to quench the broken-symmetry phase of this transition metal chalcogenide. Tracking the dynamics of the material's electronic and crystal structure after light excitation reveals surprising spectroscopic fingerprints that are only compatible with a primary order parameter of phononic nature. We rationalize our findings through state-of-the-art calculations, confirming that the structural order accounts for most of the electronic gap opening. Not only do our results uncover the long-sought mechanism driving the phase transition of Ta$_2$NiSe$_5$, but they also conclusively rule out any substantial excitonic character in this instability.