论文标题

具有复杂系数的二阶差分运算符的功能耗散性标准

Criterion for the functional dissipativity of second order differential operators with complex coefficients

论文作者

Cialdea, Alberto, Maz'ya, Vladimir

论文摘要

在本文中,我们考虑了第二阶差异操作员$ e = \ nabla(a \ nabla)$的Dirichlet问题,其中$ a $是具有复杂值的$ l^\ infty $条目的矩阵。我们介绍了$ e $相对于给定函数$φ的耗散性的概念:r^+ \ to r^+ $。在假设$ im \,a $对称的假设下,我们证明条件$ | s \,φ'(s)| \,| \ langle im \,a(x)\,ξ,ξ\ rangle | \ leq 2 \,\ sqrt {φ(s)\,[s \,φ(s)]'} \,\ langle re \ \ langle re \,a(x) $ s> 0 $,$之一,在r^n $中)是必需的,对于$ e $的功能消散性是必要的。

In the present paper we consider the Dirichlet problem for the second order differential operator $E=\nabla(A \nabla)$,where $A$ is a matrix with complex valued $L^\infty$ entries. We introduce the concept of dissipativity of $E$ with respect to a given function $φ:R^+ \to R^+$. Under the assumption that the $Im\, A$ is symmetric, we prove that the condition $|s\, φ'(s)| \, | \langle Im\, A (x)\, ξ,ξ\rangle |\leq 2\, \sqrt{φ(s)\, [s\, φ(s)]'}\, \langle Re\, A(x) \, ξ,ξ\rangle $ (for almost every $x\inΩ\subset R^N$ and for any $s>0$, $ξ\in R^N$) is necessary and sufficient for the functional dissipativity of $E$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源