论文标题

立方阶段状态生成的高斯转换协议

Gaussian conversion protocols for cubic phase state generation

论文作者

Zheng, Yu, Hahn, Oliver, Stadler, Pascal, Holmvall, Patric, Quijandría, Fernando, Ferraro, Alessandro, Ferrini, Giulia

论文摘要

具有连续变量的通用量子计算还需要非高斯资源,除了一套高斯操作。可以实现通用量子计算的已知资源是立方相状态,它是一种非高斯州,其实验实现迄今仍然难以捉摸。在本文中,我们介绍了两种高斯转换方案,允许在实验上实现的非高斯状态的转化,即trisqueezed态[Sandbo Changet al。,Phys。 Rev. X10,011011(2020)],到立方相状态。第一个协议是确定性的,它涉及主动(在线)挤压,实现了较大的保真度,使确定性高斯协议饱和。第二个方案是概率的,它涉及辅助挤压状态,因此消除了在线挤压的必要性,但仍比确定性案例保持显着的成功概率和忠诚度。这些协议的成功提供了有力的证据,用于使用trisqueezed态作为通用量子计算的资源。

Universal quantum computing with continuous variables requires non-Gaussian resources, in addition to a Gaussian set of operations. A known resource enabling universal quantum computation is the cubic phase state, a non-Gaussian state whose experimental implementation has so far remained elusive. In this paper, we introduce two Gaussian conversion protocols that allow for the conversion of a non-Gaussian state that has been achieved experimentally, namely the trisqueezed state [Sandbo Changet al., Phys. Rev. X10, 011011 (2020)],to a cubic phase state. The first protocol is deterministic and it involves active (in-line) squeezing, achieving large fidelities that saturate the bound for deterministic Gaussian protocols. The second protocol is probabilistic and it involves an auxiliary squeezed state, thus removing the necessity of in-line squeezing but still maintaining significant success probabilities and fidelities even larger than for the deterministic case. The success of these protocols provides strong evidence for using trisqueezed states as resources for universal quantum computation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源