论文标题

IV组纳米线阵列中的延长短波红外吸收

Extended Short-Wave Infrared Absorption in Group IV Nanowire Arrays

论文作者

Attiaoui, A., Bouthillier, É., Daligou, G., Kumar, A., Assali, S., Moutanabbir, O.

论文摘要

使用可扩展材料的扩展短波红外(E-SWIR)范围的工程光吸收是一种长期追求的能力,对于实施具有成本效益和高性能感测和成像技术至关重要。本文中,我们使用硅的集成平台展示了增强的,可调节的E-SWIR吸收,这些平台由亚稳态的GESN纳米线组成,SN含量为9%,直径可变。将详细的模拟与实验分析结合使用,以系统地研究Light-gesn纳米线相互作用,以量身定制和优化纳米线阵列几何参数和相应的光学响应。理论上可以预测直径依赖性泄漏模式的共振峰,并用1.5至2.2μm的可调波长进行实验确认。使用直径为325 nm的纳米线,在2.1μm下相对于GESN层的吸收相对于GESN层增强了三倍。有限的差异时域模拟揭示了E-SWIR的潜在机制增强了吸收。 HE11和HE12谐振模式与纳米线的耦合在325 nm以上的直径下观察到,而在较小的直径和更长的波长下,HE11模式被引导到下面的GE层中。 NWS中锥度的存在进一步扩展了吸收范围,同时最大程度地减少了反射。这种设计和增强E-SWIR吸收的能力为实施利用全组IV平台的新型光子设备奠定了基础。

Engineering light absorption in the extended short-wave infrared (e-SWIR) range using scalable materials is a long-sought-after capability that is crucial to implement cost-effective and high-performance sensing and imaging technologies. Herein, we demonstrate enhanced, tunable e-SWIR absorption using silicon-integrated platforms consisting of ordered arrays of metastable GeSn nanowires with Sn content reaching 9 at.% and variable diameters. Detailed simulations were combined with experimental analyses to systematically investigate light-GeSn nanowire interactions to tailor and optimize the nanowire array geometrical parameters and the corresponding optical response. The diameter-dependent leaky mode resonance peaks are theoretically predicted and experimentally confirmed with a tunable wavelength from 1.5 to 2.2 μm. A three-fold enhancement in the absorption with respect to GeSn layers at 2.1 μm was achieved using nanowires with a diameter of 325 nm. Finite difference time domain simulations unraveled the underlying mechanisms of the e-SWIR enhanced absorption. Coupling of the HE11 and HE12 resonant modes to nanowires is observed at diameters above 325 nm, while at smaller diameters and longer wavelengths the HE11 mode is guided into the underlying Ge layer. The presence of tapering in NWs further extends the absorption range while minimizing reflection. This ability to engineer and enhance e-SWIR absorption lays the groundwork to implement novel photonic devices exploiting all-group IV platforms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源