论文标题
求解非线性二氢方程的dirichlet边界价值问题的数值方法
Numerical method for solving the Dirichlet boundary value problem for nonlinear triharmonic equation
论文作者
论文摘要
在这项工作中,我们考虑了非线性二氢方程的Dirichlet边界价值问题。由于非线性边界值问题将非线性项的运算符方程减少到非线性项和未知的第二个正常导数,因此我们在连续和离散水平上设计了一种迭代方法,以解决问题的数值解决方案。一些示例表明,数值方法是第四阶收敛。
In this work, we consider the Dirichlet boundary value problem for nonlinear triharmonic equation. Due to the reduction of the nonlinear boundary value problem to operator equation for the nonlinear term and the unknown second normal derivative we design an iterative method at both continuous and discrete level for numerical solution of the problem. Some examples demonstrate that the numerical method is of fourth order convergence.