论文标题
具有异构决策规则的动态选择模型:在估计铁路拥挤的用户成本时应用
A Dynamic Choice Model with Heterogeneous Decision Rules: Application in Estimating the User Cost of Rail Crowding
论文作者
论文摘要
地铁骑手的拥挤估值是公交运营商各种供应方面的重要意见。通常,通过捕获骑手在选择路线的同时捕捉骑手在拥挤和旅行时间之间进行的权衡,通常可以估算出过境骑手所感知的拥挤成本。但是,现有研究依靠静态补偿性选择模型,无法解释惯性和骑手的学习行为。为了应对这些挑战,我们提出了一种新的动态潜在类模型(DLCM),(i)根据不同的决策规则将骑手分配给潜在的补偿性和惯性/习惯类别,(ii)可以随着时间的推移这些类别之间的过渡,(iii)采用基于实例的学习理论来考虑骑手的学习行为。我们使用预期最大化算法来估计DLCM,并使用Viterbi算法检索每个骑手的潜在类最可能的序列。提出的DLCM可以在任何选择上下文中应用,以捕获决策者使用的决策规则的动态。我们证明了它在估计亚洲地铁骑手的拥挤估值方面具有实际优势。为了校准模型,我们使用两个月的智能卡和车辆位置数据恢复了常规地铁骑手的日常路线偏好和车内拥挤体验。结果表明,平均骑手仅在25.5%的路线选择场合遵循补偿性规则。 DLCM估计还显示,在极拥挤的条件下,地铁车手对旅行时间的估值增加了47%。
Crowding valuation of subway riders is an important input to various supply-side decisions of transit operators. The crowding cost perceived by a transit rider is generally estimated by capturing the trade-off that the rider makes between crowding and travel time while choosing a route. However, existing studies rely on static compensatory choice models and fail to account for inertia and the learning behaviour of riders. To address these challenges, we propose a new dynamic latent class model (DLCM) which (i) assigns riders to latent compensatory and inertia/habit classes based on different decision rules, (ii) enables transitions between these classes over time, and (iii) adopts instance-based learning theory to account for the learning behaviour of riders. We use the expectation-maximisation algorithm to estimate DLCM, and the most probable sequence of latent classes for each rider is retrieved using the Viterbi algorithm. The proposed DLCM can be applied in any choice context to capture the dynamics of decision rules used by a decision-maker. We demonstrate its practical advantages in estimating the crowding valuation of an Asian metro's riders. To calibrate the model, we recover the daily route preferences and in-vehicle crowding experiences of regular metro riders using a two-month-long smart card and vehicle location data. The results indicate that the average rider follows the compensatory rule on only 25.5% of route choice occasions. DLCM estimates also show an increase of 47% in metro riders' valuation of travel time under extremely crowded conditions relative to that under uncrowded conditions.