论文标题

学习使用灵敏度信息的深神经网络优化电源网格

Learning to Optimize Power Distribution Grids using Sensitivity-Informed Deep Neural Networks

论文作者

Singh, Manish K., Gupta, Sarthak, Kekatos, Vassilis, Cavraro, Guido, Bernstein, Andrey

论文摘要

可以提倡进行分配网格优化的深度学习,以作为近乎最佳但及时的逆变器调度的有前途的解决方案。原则是训练深层神经网络(DNN),以预测最佳功率流(OPF)的解决方案,从而将计算工作从实时转移到离线。但是,在训练此DNN之前,必须解决大量OPF来创建标签的数据集。通过考虑OPF最小化的OPF参数的敏感性,授予后一个步骤仍然可能是关键的时间应用程序,这项工作提出了一种原始技术来提高DNN的预测准确性。通过扩展多参数编程,表明,尽管逆变器控制问题可能表现出双重变性,但确实存在所需的敏感性,并且可以使用任何标准二次程序(QP)求解器的输出来轻松地计算出所需的敏感性。数值测试表明,在最小的计算开销时,敏感性信息深度学习可以提高预测准确性(MSE)的准确性2-3个数量级。在小型数据制度中,改进更为重要,在小型数据制度中,DNN必须学习使用一些示例来优化。除多参数QP之外,该方法当前正在推广到参数(非) - convex优化问题。

Deep learning for distribution grid optimization can be advocated as a promising solution for near-optimal yet timely inverter dispatch. The principle is to train a deep neural network (DNN) to predict the solutions of an optimal power flow (OPF), thus shifting the computational effort from real-time to offline. Nonetheless, before training this DNN, one has to solve a large number of OPFs to create a labeled dataset. Granted the latter step can still be prohibitive in time-critical applications, this work puts forth an original technique for improving the prediction accuracy of DNNs by taking into account the sensitivities of the OPF minimizers with respect to the OPF parameters. By expanding on multiparametric programming, it is shown that although inverter control problems may exhibit dual degeneracy, the required sensitivities do exist in general and can be computed readily using the output of any standard quadratic program (QP) solver. Numerical tests showcase that sensitivity-informed deep learning can enhance prediction accuracy in terms of mean square error (MSE) by 2-3 orders of magnitude at minimal computational overhead. Improvements are more significant in the small-data regime, where a DNN has to learn to optimize using a few examples. Beyond multiparametric QPs, the approach is currently being generalized to parametric (non)-convex optimization problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源