论文标题

当我们可以信任计算机时(当我们不能)

When we can trust computers (and when we can't)

论文作者

Coveney, Peter V., Highfield, Roger R.

论文摘要

随着计算机功率无情的崛起,人们普遍期望计算机可以解决科学最紧迫的问题,甚至还可以解决最紧迫的问题。我们探讨了计算建模的局限性,并得出结论,在科学和工程领域相对简单且牢固地扎根于理论上,这些方法确实很强大。即便如此,代码,数据和文档的可用性以及用于验证,验证和不确定性量化的一系列技术,对于在计算机生成的发现中建立信任至关重要。当涉及到科学领域的复杂系统时,理论上尤其是生物学和医学,对社会科学和人文科学的说法都没有说明,计算机可以创造出客观性的幻想,这尤其是因为大数据和机器学习的兴起构成了新的挑战,在缺乏真正的解释能力的同时,对重复性构成了新的挑战。我们还讨论了自然世界的重要方面,这些方面无法通过数字方式解决。从长远来看,需要重新强调模拟方法,以缓解目前在数字计算中置于的过度信仰。

With the relentless rise of computer power, there is a widespread expectation that computers can solve the most pressing problems of science, and even more besides. We explore the limits of computational modelling and conclude that, in the domains of science and engineering that are relatively simple and firmly grounded in theory, these methods are indeed powerful. Even so, the availability of code, data and documentation, along with a range of techniques for validation, verification and uncertainty quantification, are essential for building trust in computer generated findings. When it comes to complex systems in domains of science that are less firmly grounded in theory, notably biology and medicine, to say nothing of the social sciences and humanities, computers can create the illusion of objectivity, not least because the rise of big data and machine learning pose new challenges to reproducibility, while lacking true explanatory power. We also discuss important aspects of the natural world which cannot be solved by digital means. In the long-term, renewed emphasis on analogue methods will be necessary to temper the excessive faith currently placed in digital computation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源