论文标题
在具有密度链路图的超图中的哈密顿周期上
On Hamiltonian cycles in hypergraphs with dense link graphs
论文作者
论文摘要
我们表明,$ n $ n $顶点上的每一个$ k $均匀的超图,其最低$ $(k-2)$ - 学位至少为$(5/9+o(1))n^2/2 $包含一个汉密尔顿周期。由于汉和赵而引起的结构表明,这种最低度条件是最佳的。 Lang和Sahueza-Matamala独立证明了相同的结果。
We show that every $k$-uniform hypergraph on $n$ vertices whose minimum $(k-2)$-degree is at least $(5/9+o(1))n^2/2$ contains a Hamiltonian cycle. A construction due to Han and Zhao shows that this minimum degree condition is optimal. The same result was proved independently by Lang and Sahueza-Matamala.