论文标题

深度集合分析,用于成像X射线极化法

Deep Ensemble Analysis for Imaging X-ray Polarimetry

论文作者

Peirson, A. L., Romani, R. W., Marshall, H. L., Steiner, J. F., Baldini, L.

论文摘要

我们提出了一种使用成像仪表仪增强X射线望远镜观测值的灵敏度的方法,重点是在成像X射线极化探索器(IXPE)上飞行的气体像素检测器(GPD)。我们的分析确定了1-9 KEV事件轨道的光电子方向,X射线吸收点和X射线能量,并对统计和模型(重建)不确定性进行了估计。我们使用来自蒙特卡洛事件模拟训练的重新卷积神经网络集合的加权最大似然组合。我们定义了一个值得的数字,以比较轨道重建算法中的两极化偏差变化权衡权衡。对于幂律源光谱,我们的方法改进了当前计划的IXPE分析(以及先前的深度学习方法),可增加约45%的有效暴露时间。对于单个能量,我们的方法在模拟100%极化事件的调制因子中产生20-30%的绝对改善,同时将残留系统调制保持在有限样品最小值的1 sigma之内。吸收点位置和光子能量估计值也得到显着改善。我们已经使用来自实际GPD检测器的示例数据验证了我们的方法。

We present a method for enhancing the sensitivity of X-ray telescopic observations with imaging polarimeters, with a focus on the gas pixel detectors (GPDs) to be flown on the Imaging X-ray Polarimetry Explorer (IXPE). Our analysis determines photoelectron directions, X-ray absorption points and X-ray energies for 1-9 keV event tracks, with estimates for both the statistical and model (reconstruction) uncertainties. We use a weighted maximum likelihood combination of predictions from a deep ensemble of ResNet convolutional neural networks, trained on Monte Carlo event simulations. We define a figure of merit to compare the polarization bias-variance trade-off in track reconstruction algorithms. For power-law source spectra, our method improves on the current planned IXPE analysis (and previous deep learning approaches), providing ~45% increase in effective exposure times. For individual energies, our method produces 20-30% absolute improvements in modulation factor for simulated 100% polarized events, while keeping residual systematic modulation within 1 sigma of the finite sample minimum. Absorption point location and photon energy estimates are also significantly improved. We have validated our method with sample data from real GPD detectors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源