论文标题
使用链的因果集中的歧管特性
Manifold Properties from Causal Sets using Chains
论文作者
论文摘要
我们通过数值分析来研究估计曲率,适当时间和时空维度(适当的时间和时空维度)的因果集定义的链的实用性。特别是,我们表明,在$ \ text {ds} _2 $和$ \ text {flrw} _3 $ pacetimes arxiv的形式主义:1212.0631具有轻微的修改,可提供正确的连续性属性。我们还通过考虑两种非Manifoldike因果集的模型来讨论使用这种形式主义的歧义性测试。这是在离散子结构的情况下(在这种情况下为因果集合)的连续性重建的几何重建的更广泛概念的一部分。
We study the utility of chains defined on causal sets in estimating continuum properties like the curvature, the proper time and the spacetime dimension through a numerical analysis. In particular, we show that in $\text{dS}_2$ and $\text{FLRW}_3$ spacetimes the formalism of arXiv:1212.0631 with slight modifications gives the right continuum properties. We also discuss a possible test of manifoldlikeness using this formalism by considering two models of non-manifoldlike causal sets. This is a part of a broader idea of the geometrical reconstruction of continuum properties given a discrete sub structure, in this case the causal set.