论文标题

Lebesgue点的最近邻居表征在度量度量空间中

A Nearest Neighbor Characterization of Lebesgue Points in Metric Measure Spaces

论文作者

Cesari, Tommaso, Colomboni, Roberto

论文摘要

事实证明,几乎每个观点的属性都是Lebesgue点,对于基于最近的邻居的几种分类算法的一致性至关重要。我们以1个最新的邻居回归算法的估计来表征Lebesgue点,从而在相应的收敛问题中脱颖而出,脱颖而出。然后,我们给出了结果的应用,证明了在一般度量空间中大量一类最邻居分类算法的风险的融合,几乎每个点都是lebesgue点。

The property of almost every point being a Lebesgue point has proven to be crucial for the consistency of several classification algorithms based on nearest neighbors. We characterize Lebesgue points in terms of a 1-Nearest Neighbor regression algorithm for pointwise estimation, fleshing out the role played by tie-breaking rules in the corresponding convergence problem. We then give an application of our results, proving the convergence of the risk of a large class of 1-Nearest Neighbor classification algorithms in general metric spaces where almost every point is a Lebesgue point.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源