论文标题

将有关结构约束的先验知识纳入模型识别

Incorporating prior knowledge about structural constraints in model identification

论文作者

Maurya, Deepak, Chinta, Sivadurgaprasad, Sivaram, Abhishek, Rengaswamy, Raghunathan

论文摘要

模型识别是化学工业中的关键问题。近年来,利用有关感兴趣系统的部分知识的学习数据驱动模型的兴趣越来越大。大多数模型识别技术都没有提供合并任何部分信息(例如模型结构)的自由。在本文中,我们提出了模型识别技术,可以利用这种部分信息来产生更好的估计。具体而言,我们提出了结构性主成分分析(SPCA),该结构主成分分析(SPCA)通过利用有关模型的基本结构信息来即兴地对PCA等现有方法。大多数现有方法或密切相关的方法都使用稀疏性约束,这可能在计算上昂贵。我们提出的方法是对PCA的明智修改以利用结构信息。使用合成和工业案例研究证明了拟议方法的功效。

Model identification is a crucial problem in chemical industries. In recent years, there has been increasing interest in learning data-driven models utilizing partial knowledge about the system of interest. Most techniques for model identification do not provide the freedom to incorporate any partial information such as the structure of the model. In this article, we propose model identification techniques that could leverage such partial information to produce better estimates. Specifically, we propose Structural Principal Component Analysis (SPCA) which improvises over existing methods like PCA by utilizing the essential structural information about the model. Most of the existing methods or closely related methods use sparsity constraints which could be computationally expensive. Our proposed method is a wise modification of PCA to utilize structural information. The efficacy of the proposed approach is demonstrated using synthetic and industrial case-studies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源