论文标题
在不完整的paschen-back效应状态下,依赖角度的部分频率重新分布的重要性
Importance of Angle-dependent Partial Frequency Redistribution in Hyperfine Structure Transitions Under Incomplete Paschen-Back Effect Regime
论文作者
论文摘要
原子上偏振光散射中的角频耦合由角度依赖性(AD)部分频率重新分布(PRD)矩阵表示。线性极化的太阳光谱中有几条线,其中PRD与超细结构状态之间的量子干扰相结合起着重要作用。在这里,我们介绍了极化线转移方程的解,包括用于散射具有超细结构分裂(HFS)和非偏振下级水平的两级原子上的AD-PRD矩阵。我们说明了任意磁场(包括不完整的paschen-back效应制度)和弹性碰撞的影响。出于探索目的,我们考虑一种自我激气的平面气氛,并使用代表孤立的na \,{\ sc i} d $ _2 $ line的原子参数。在这种情况下,我们表明,AD-PRD效应对于低于30克的场强度是显着的,但是在计算上要求较小的角度平均(AA)PRD的近似值可能用于更强的场。
Angle-frequency coupling in scattering of polarized light on atoms is represented by the angle-dependent (AD) partial frequency redistribution (PRD) matrices. There are several lines in the linearly polarized solar spectrum, for which PRD combined with quantum interference between hyperfine structure states play a significant role. Here we present the solution of the polarized line transfer equation including the AD-PRD matrix for scattering on a two-level atom with hyperfine structure splitting (HFS) and an unpolarized lower level. We account for the effects of arbitrary magnetic fields (including the incomplete Paschen-Back effect regime) and elastic collisions. For exploratory purposes we consider a self-emitting isothermal planar atmosphere and use atomic parameters that represent an isolated Na\,{\sc i} D$_2$ line. For this case we show that the AD-PRD effects are significant for field strengths below about 30G, but that the computationally much less demanding approximation of angle-averaged (AA) PRD may be used for stronger fields.