论文标题

轻巧的图像超分辨率具有增强的CNN

Lightweight image super-resolution with enhanced CNN

论文作者

Tian, Chunwei, Zhuge, Ruibin, Wu, Zhihao, Xu, Yong, Zuo, Wangmeng, Chen, Chen, Lin, Chia-Wen

论文摘要

具有很强表达能力的深卷卷卷神经网络(CNN)在单图像超分辨率(SISR)上取得了令人印象深刻的表现。但是,它们过多的卷积和参数通常会消耗较高的计算成本和训练SR模型的更多内存存储,这将其应用程序限制在现实世界中的资源受限设备中。为了解决这些问题,我们提出了具有三个连续的亚块,信息提取和增强块(IEEB),重建块(RB)和信息修复块(IRB)的轻巧增强的SR CNN(Lesrcnn)。具体而言,IEEB提取了分层低分辨率(LR)特征,并汇总所获得的特征,以提高SISR深层浅层层的记忆能力。为了删除获得的冗余信息,在IEEB中采用了异质体系结构。之后,RB通过融合全球和本地功能将低频功能转换为高频功能,这与IEEB解决了长期依赖性问题。最后,IRB使用RB的粗大高频功能来学习更准确的SR功能并构建SR图像。提出的Lesrcnn可以通过模型获得不同尺度的高质量图像。广泛的实验表明,在定性和定量评估方面,提出的Lesrcnn在SISR上的最先进。 Lesrcnn的代码可在https://github.com/hellloxiaotian/lesrcnn上访问。

Deep convolutional neural networks (CNNs) with strong expressive ability have achieved impressive performances on single image super-resolution (SISR). However, their excessive amounts of convolutions and parameters usually consume high computational cost and more memory storage for training a SR model, which limits their applications to SR with resource-constrained devices in real world. To resolve these problems, we propose a lightweight enhanced SR CNN (LESRCNN) with three successive sub-blocks, an information extraction and enhancement block (IEEB), a reconstruction block (RB) and an information refinement block (IRB). Specifically, the IEEB extracts hierarchical low-resolution (LR) features and aggregates the obtained features step-by-step to increase the memory ability of the shallow layers on deep layers for SISR. To remove redundant information obtained, a heterogeneous architecture is adopted in the IEEB. After that, the RB converts low-frequency features into high-frequency features by fusing global and local features, which is complementary with the IEEB in tackling the long-term dependency problem. Finally, the IRB uses coarse high-frequency features from the RB to learn more accurate SR features and construct a SR image. The proposed LESRCNN can obtain a high-quality image by a model for different scales. Extensive experiments demonstrate that the proposed LESRCNN outperforms state-of-the-arts on SISR in terms of qualitative and quantitative evaluation. The code of LESRCNN is accessible on https://github.com/hellloxiaotian/LESRCNN.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源