论文标题
有监督的鲁棒配置集群
Supervised Robust Profile Clustering
论文作者
论文摘要
在许多研究中,降低方法用于介绍参与者的特征。例如,营养流行病学家经常使用潜在的类模型来表征饮食模式。这种方法的一个挑战是了解亚种群跨群体的细微差异。强大的轮廓聚类(RPC)提供了双重柔性聚类模型,其中参与者可以在两个级别上进行聚类:(1)在全球范围内,参与者根据在整个总体中共享的行为进行聚类,(2)在本地行为可以在子选民中偏离和群集。我们使用联合模型将簇与健康结果联系起来。该模型用于在美国得出饮食模式,并评估口面裂口的病例比例。使用1997 - 2009年国家先生缺陷预防研究的饮食消费数据,这是一项基于人群的病例对照研究,我们确定孕产妇饮食特征与后代之间的口面裂缝如何相关。结果表明,与鸡肉(例如鸡肉和牛肉)相比,食用大量水果和蔬菜的母亲的几率较低,使儿童患有口腔裂缝缺陷。
In many studies, dimension reduction methods are used to profile participant characteristics. For example, nutrition epidemiologists often use latent class models to characterize dietary patterns. One challenge with such approaches is understanding subtle variations in patterns across subpopulations. Robust Profile Clustering (RPC) provides a dual flexible clustering model, where participants may cluster at two levels: (1) globally, where participants are clustered according to behaviors shared across an overall population, and (2) locally, where individual behaviors can deviate and cluster in subpopulations. We link clusters to a health outcome using a joint model. This model is used to derive dietary patterns in the United States and evaluate case proportion of orofacial clefts. Using dietary consumption data from the 1997-2009 National Birth Defects Prevention Study, a population-based case-control study, we determine how maternal dietary profiles are associated with an orofacial cleft among offspring. Results indicated that mothers who consumed a high proportion of fruits and vegetables compared to meats, such as chicken and beef, had lower odds delivering a child with an orofacial cleft defect.