论文标题

Visimages:细粒度的专家宣布的可视化数据集

VisImages: A Fine-Grained Expert-Annotated Visualization Dataset

论文作者

Deng, Dazhen, Wu, Yihong, Shu, Xinhuan, Wu, Jiang, Fu, Siwei, Cui, Weiwei, Wu, Yingcai

论文摘要

可视化出版物中的图像包含丰富的信息,例如新颖的可视化设计和内隐设计模式。这些图像的系统集合可以在许多方面为社区做出贡献,例如文献分析和可视化的自动化任务。在本文中,我们构建并使公共一个数据集,Vibimages,该数据集收集了12,267张图像,并带有来自IEEE Infovis和Gast的1,397篇论文的标题。该数据集建立在全面的可视化分类法上,包括35,096个可视化及其边界框。我们在三种用例中演示了构现象的有用性:1)调查具有Visimages Explorer的可视化使用,2)培训和基准分类模型进行可视化分析,以及3)自动可视化的可视化分析。

Images in visualization publications contain rich information, e.g., novel visualization designs and implicit design patterns of visualizations. A systematic collection of these images can contribute to the community in many aspects, such as literature analysis and automated tasks for visualization. In this paper, we build and make public a dataset, VisImages, which collects 12,267 images with captions from 1,397 papers in IEEE InfoVis and VAST. Built upon a comprehensive visualization taxonomy, the dataset includes 35,096 visualizations and their bounding boxes in the images.We demonstrate the usefulness of VisImages through three use cases: 1) investigating the use of visualizations in the publications with VisImages Explorer, 2) training and benchmarking models for visualization classification, and 3) localizing visualizations in the visual analytics systems automatically.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源