论文标题

EVO-RL:进化驱动的强化学习

EVO-RL: Evolutionary-Driven Reinforcement Learning

论文作者

Hallawa, Ahmed, Born, Thorsten, Schmeink, Anke, Dartmann, Guido, Peine, Arne, Martin, Lukas, Iacca, Giovanni, Eiben, A. E., Ascheid, Gerd

论文摘要

在这项工作中,我们提出了一种由进化计算驱动的增强学习方法的新方法。我们的算法被称为进化驱动的增强学习(EVO-RL),将增强学习算法嵌入了进化循环中,在该循环中,我们在其中明确区分了纯粹可转化的(本能)行为与纯粹可学习的行为。此外,我们建议这种区别是由进化过程决定的,从而使EVO-RL适应了不同的环境。此外,EVO-RL促进了对具有无奖励状态的环境的学习,这使其更适合具有不完整信息的现实世界中的问题。为了证明EVO-RL导致最先进的性能,我们介绍了在EVO-RL内操作时不同最先进的强化学习算法的性能,并将其与这些相同算法独立执行的情况进行比较。结果表明,在我们的EVO-RL方法中嵌入的增强学习算法显着优于OpenAI健身房控制问题的同一RL算法的独立版本,其无奖励状态受相同计算预算的限制。

In this work, we propose a novel approach for reinforcement learning driven by evolutionary computation. Our algorithm, dubbed as Evolutionary-Driven Reinforcement Learning (evo-RL), embeds the reinforcement learning algorithm in an evolutionary cycle, where we distinctly differentiate between purely evolvable (instinctive) behaviour versus purely learnable behaviour. Furthermore, we propose that this distinction is decided by the evolutionary process, thus allowing evo-RL to be adaptive to different environments. In addition, evo-RL facilitates learning on environments with rewardless states, which makes it more suited for real-world problems with incomplete information. To show that evo-RL leads to state-of-the-art performance, we present the performance of different state-of-the-art reinforcement learning algorithms when operating within evo-RL and compare it with the case when these same algorithms are executed independently. Results show that reinforcement learning algorithms embedded within our evo-RL approach significantly outperform the stand-alone versions of the same RL algorithms on OpenAI Gym control problems with rewardless states constrained by the same computational budget.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源