论文标题

在分数级图及其同步上

On fractional-order maps and their synchronization

论文作者

Gade, Prashant M., Bhalekar, Sachin B.

论文摘要

我们研究线性分数图的稳定性。我们表明,在稳定区域中,Mittag-Leffler函数描述了进化,在这些情况下可以获得有效的Lyapunov指数。对于一维系统,该指数可以与相应的分数微分方程有关。 $ f(x)= ax $的分数等效于$ a_c(α)<a <a <1 $,其中$α$是分数订单参数,而$ a_c(α)\ of -ach of -α$。对于耦合的线性分数图,我们可以获得“正常模式”,并将演变减少到有效的一维系统。如果特征值是真实的,则耦合系统的稳定性由有效的一维正常模式的稳定性决定。对于复杂的特征值,我们获得了更丰富的图片。但是,在稳定区域中,模量的演变由Mittag-Leffler函数决定,有效的Lyapunov指数由特征值的模量确定。我们将这些研究扩展到分数非线性图的同步固定点。

We study the stability of linear fractional order maps. We show that in the stable region, the evolution is described by Mittag-Leffler functions and a well defined effective Lyapunov exponent can be obtained in these cases. For one-dimensional systems, this exponent can be related to the corresponding fractional differential equation. A fractional equivalent of map $f(x)=ax$ is stable for $a_c(α)<a<1$ where $α$ is a fractional order parameter and $a_c(α)\approx -α$. For coupled linear fractional maps, we can obtain `normal modes' and reduce the evolution to effectively one-dimensional system. If the eigenvalues are real the stability of the coupled system is dictated by the stability of effectively one-dimensional normal modes. For complex eigenvalues, we obtain a much richer picture. However, in the stable region, the evolution of modulus is dictated by Mittag-Leffler function and the effective Lyapunov exponent is determined by modulus of eigenvalues. We extend these studies to synchronized fixed points of fractional nonlinear maps.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源