论文标题

不正当的Schobers和GKZ系统

Perverse schobers and GKZ systems

论文作者

Špenko, Špela, Bergh, Michel Van den

论文摘要

不正当的学者是反向或骨的分类。在先前的工作中,我们在Halpern-Leistner和SAM与还原组的准对称表示相关的弦乐KählerOduli空间(SKMS)的部分紧凑型上构建了一个不正当的Schober。当组是圆环时,SKMS对应于GKZ判别基因座的补充(这是风筝显示的准对称情况中的超平面布置)。我们在这里表明,在非共鸣参数的情况下,我们构建的合适的变体对关联的GKZ超几何系统提供了分类。作为中间结果,我们描述了这种“准对称” GKZ高几何系统的单轨道。

Perverse schobers are categorifications of perverse sheaves. In prior work we constructed a perverse schober on a partial compactification of the stringy Kähler moduli space (SKMS) associated by Halpern-Leistner and Sam to a quasi-symmetric representation of a reductive group. When the group is a torus the SKMS corresponds to the complement of the GKZ discriminant locus (which is a hyperplane arrangement in the quasi-symmetric case shown by Kite). We show here that a suitable variation of the perverse schober we constructed provides a categorification of the associated GKZ hypergeometric system in the case of non-resonant parameters. As an intermediate result we give a description of the monodromy of such "quasi-symmetric" GKZ hypergeometric systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源