论文标题
很少有人足够:脑细胞分类的任务增强主动元学习
Few Is Enough: Task-Augmented Active Meta-Learning for Brain Cell Classification
论文作者
论文摘要
当关注任务或数据收集协议更改时,深度神经网络(或DNNS)必须不断应对输入数据的分布变化。从头开始验证网络以应对本期的问题,构成了巨大的成本。元学习旨在提供对这些基本分布变化敏感的自适应模型,但在元训练过程中需要许多任务。在本文中,我们提出了一种任务增强的主动元学习方法(敏捷)方法,以通过使用少量培训示例有效地适应新任务。敏捷将元学习算法与一种新型任务增强技术相结合,我们用来生成初始自适应模型。然后,它使用贝叶斯辍学不确定性估计值,在将模型更新为新任务时会积极选择最困难的样本。这使敏捷可以通过更少的任务和一些有用的样本学习,从而通过有限的数据集实现高性能。我们使用脑细胞分类任务执行实验,并将结果与从头开始训练的普通元学习模型进行比较。我们表明,提议的任务增强的元学习框架可以在单个梯度步骤以有限数量的培训样本后学习新的单元格类型。我们表明,当训练样本的数量极少时,贝叶斯不确定性的积极学习可以进一步提高性能。仅使用1%的培训数据和一个更新步骤,我们在新的单元格类型分类任务上达到了90%的准确性,比最先进的元学习算法提高了50%的分数。
Deep Neural Networks (or DNNs) must constantly cope with distribution changes in the input data when the task of interest or the data collection protocol changes. Retraining a network from scratch to combat this issue poses a significant cost. Meta-learning aims to deliver an adaptive model that is sensitive to these underlying distribution changes, but requires many tasks during the meta-training process. In this paper, we propose a tAsk-auGmented actIve meta-LEarning (AGILE) method to efficiently adapt DNNs to new tasks by using a small number of training examples. AGILE combines a meta-learning algorithm with a novel task augmentation technique which we use to generate an initial adaptive model. It then uses Bayesian dropout uncertainty estimates to actively select the most difficult samples when updating the model to a new task. This allows AGILE to learn with fewer tasks and a few informative samples, achieving high performance with a limited dataset. We perform our experiments using the brain cell classification task and compare the results to a plain meta-learning model trained from scratch. We show that the proposed task-augmented meta-learning framework can learn to classify new cell types after a single gradient step with a limited number of training samples. We show that active learning with Bayesian uncertainty can further improve the performance when the number of training samples is extremely small. Using only 1% of the training data and a single update step, we achieved 90% accuracy on the new cell type classification task, a 50% points improvement over a state-of-the-art meta-learning algorithm.