论文标题
Poincaré-HOPF定理用于孤立的决定性奇异性
Poincaré-Hopf Theorem for Isolated Determinantal Singularities
论文作者
论文摘要
令$ x \ subset \ mathbb {p}^r $为一个投射$ d $ - 带有隔离的确定性奇点的变化,$ω$是$ x $的$ 1 $ form,具有有限数量的奇异性(从分层的实验中)。在$ r $的某些技术条件下,我们使用Poincaré-HOPF指数的两个概括,目的是证明Poincaré-Hopf类型定理的$ x $。
Let $X \subset\mathbb{P}^r$ be a projective $d$-variety with isolated determinantal singularities and $ω$ be a $1$-form on $X$ with a finite number of singularities (in the stratified sense). Under some technical conditions on $r$ we use two generalization of Poincaré-Hopf index with the goal of proving a Poincaré-Hopf Type Theorem for $X$.