论文标题

惩罚估计和预测多个受试者密集型纵向数据

Penalized Estimation and Forecasting of Multiple Subject Intensive Longitudinal Data

论文作者

Fisher, Zachary F., Kim, Younghoon, Fredrickson, Barbara, Pipiras, Vladas

论文摘要

社会和行为科学家越来越多地使用密集的纵向数据(ILD)。随着可用性的增加,带来了建模和预测复杂的生物学,行为和生理现象的新机会。尽管这些新的机会心理学研究人员并没有充分利用这些数据固有的有希望的机会,但有可能在个人层面上预测心理过程。为了解决文献中的这一差距,我们提出了一个新颖的建模框架,该框架解决了有关建模动态过程的心理文献中的许多局部挑战和开放问题。首先,当单个时间序列的长度和收集的变量数量大致相等,或者时间序列长度短于时间序列分析所需的时间时,我们如何建模和预测ILD?其次,我们如何才能最好地利用大多数ILD场景固有的横截面(人之间的)信息,同时确认个体的数量差异(例如,参数幅度)和定性(例如,在结构动力学中)有所不同?尽管在许多心理过程中得到了公认的异质性,是否有可能利用小组级信息来支持在个人层面上的改善预测?在手稿的其余部分中,我们试图解决与多个受试者ILD的预测相关的这些和其他紧迫的问题。

Intensive Longitudinal Data (ILD) is increasingly available to social and behavioral scientists. With this increased availability come new opportunities for modeling and predicting complex biological, behavioral, and physiological phenomena. Despite these new opportunities psychological researchers have not taken full advantage of promising opportunities inherent to this data, the potential to forecast psychological processes at the individual level. To address this gap in the literature we present a novel modeling framework that addresses a number of topical challenges and open questions in the psychological literature on modeling dynamic processes. First, how can we model and forecast ILD when the length of individual time series and the number of variables collected are roughly equivalent, or when time series lengths are shorter than what is typically required for time series analyses? Second, how can we best take advantage of the cross-sectional (between-person) information inherent to most ILD scenarios while acknowledging individuals differ both quantitatively (e.g. in parameter magnitude) and qualitatively (e.g. in structural dynamics)? Despite the acknowledged between-person heterogeneity in many psychological processes is it possible to leverage group-level information to support improved forecasting at the individual level? In the remainder of the manuscript, we attempt to address these and other pressing questions relevant to the forecasting of multiple-subject ILD.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源