论文标题
有限 - $ n $校正M-Brane指数
Finite-$N$ corrections to the M-brane indices
论文作者
论文摘要
我们研究了有限的$ n $校正,以根据M2和M5-BRANES实现的理论的超宪法指数。对于在$ n $ m2-branes堆栈中实现的三维理论,我们计算了有限的$ n $校正,作为双几何branes在双几何$ ads_4 \ times \ times \ boldsymbol {s}^7 $中的贡献。我们仅考虑单个包装的M5-Brane配置,而忽略了多包包装的配置。我们将结果与根据ABJM理论计算得出的索引进行比较,并找到由于多重包装而导致的预期错误的一致性。对于$ n $ m5-branes上的六维理论,我们通过分析$ ads_7 \ times \ boldsymbol {s}^4 $中的扩展M2-branes来计算索引。同样,我们仅包括带有单个包装的配置。我们首先将$ n = 1 $的结果与自由张量多重的索引进行比较,以估计由于多重包装而导致的错误顺序。我们明确计算$ a_ {n-1} $理论的索引的前几个术语,并确认可以通过Super-Congron-grom-grom-grom-grom-grom-grom-grom-grom-grom-grom-grom-grom-grom-grom-grom-grom-grom-grounder的表示。我们还讨论了对六维Schur样索引的多包贡献。
We investigate finite-$N$ corrections to the superconformal indices of the theories realized on M2- and M5-branes. For three-dimensional theories realized on a stack of $N$ M2-branes we calculate the finite-$N$ corrections as the contribution of extended M5-branes in the dual geometry $AdS_4\times \boldsymbol{S}^7$. We take only M5-brane configurations with a single wrapping into account, and neglect multiple-wrapping configurations. We compare the results with the indices calculated from the ABJM theory, and find agreement up to expected errors due to the multiple wrapping. For six-dimensional theories on $N$ M5-branes we calculate the indices by analyzing extended M2-branes in $AdS_7\times \boldsymbol{S}^4$. Again, we include only configurations with single wrapping. We first compare the result for $N=1$ with the index of the free tensor multiplet to estimate the order of the error due to multiple wrapping. We calculate first few terms of the index of $A_{N-1}$ theories explicitly, and confirm that they can be expanded by superconformal representations. We also discuss multiple-wrapping contributions to the six-dimensional Schur-like index.