论文标题

相对论粘性的非抗性磁流体动力学中的因果关系和稳定性

Causality and stability in relativistic viscous non-resistive magneto-fluid dynamics

论文作者

Biswas, Rajesh, Dash, Ashutosh, Haque, Najmul, Pu, Shi, Roy, Victor

论文摘要

我们研究了相对论粘性的磁性流动力学在以色列 - 斯图尔特(IS)二阶理论的框架中的因果关系和稳定性,并且在修改后的理论中也将磁场的效果融合在粘性应力的弛豫方程中。我们通过在其平衡值周围扰动流体变量来计算分散关系。在理想的磁流失动力学极限中,线性分散关系产生众所周知的传播模式:alfvén和磁性模式。在存在质量粘性压力的存在下,发现因果关系与磁场的幅度无关。当我们使用特征方法采取方程式的完整非线性形式时,相同的界限也保持不变。在存在剪切粘性压力的情况下,因果关系结合与两个磁性模式的磁场的大小无关。然而,剪切alfvén模式结合的因果关系取决于传播的大小和方向。对于修改,理论是在剪切粘度的存在下,新的非流动力模式出现了,但是渐近因果关系条件与IS相同。总而言之,尽管磁场确实会影响流体中的波传播,但流体静止框架中稳定性和渐近因果关系条件的研究表明,流体仍然稳定和因果关系,鉴于它们占据了某些渐近因果关系条件。

We investigate the causality and the stability of the relativistic viscous magneto-hydrodynamics in the framework of the Israel-Stewart (IS) second-order theory, and also within a modified IS theory which incorporates the effect of magnetic fields in the relaxation equations of the viscous stress. We compute the dispersion relation by perturbing the fluid variables around their equilibrium values. In the ideal magnetohydrodynamics limit, the linear dispersion relation yields the well-known propagating modes: the Alfvén and the magneto-sonic modes.In the presence of bulk viscous pressure, the causality bound is found to be independent of the magnitude of the magnetic field. The same bound also remains true, when we take the full non-linear form of the equation using the method of characteristics. In the presence of shear viscous pressure, the causality bound is independent of the magnitude of the magnetic field for the two magneto-sonic modes. The causality bound for the shear-Alfvén modes, however, depends both on the magnitude and the direction of the propagation. For modified IS theory in the presence of shear viscosity, new non-hydrodynamic modes emerge but the asymptotic causality condition is the same as that of IS. In summary, although the magnetic field does influence the wave propagation in the fluid, the study of the stability and asymptotic causality conditions in the fluid rest frame shows that the fluid remains stable and causal given that they obey certain asymptotic causality condition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源