论文标题
随机缺失输入数据的多域图像完成
Multi-Domain Image Completion for Random Missing Input Data
论文作者
论文摘要
多域数据被广泛利用在视力应用中,利用来自不同方式的互补信息,例如,来自多参数磁共振成像(MRI)的脑肿瘤分割。但是,由于可能的数据损坏和不同的成像协议,在实践中的多个数据源之间,每个域的图像的可用性可能会有所不同,这使得建立具有多种输入数据集的通用模型挑战。为了解决这个问题,我们提出了一种通用方法,以完成实际应用程序中随机丢失的域数据。具体而言,我们开发了一种新型的多域图像完成方法,该方法利用具有代表性分离方案的生成对抗网络(GAN)来提取共享的骨架编码和跨多个域进行编码的共享骨架编码。我们进一步说明,可以通过引入包含图像完成和通过共享内容编码器的统一框架来利用多域图像完成中学习的表示形式,例如分割。该实验表明,分别在三个数据集上提高了脑肿瘤分割,前列腺分割和面部表达图像完成的性能一致。
Multi-domain data are widely leveraged in vision applications taking advantage of complementary information from different modalities, e.g., brain tumor segmentation from multi-parametric magnetic resonance imaging (MRI). However, due to possible data corruption and different imaging protocols, the availability of images for each domain could vary amongst multiple data sources in practice, which makes it challenging to build a universal model with a varied set of input data. To tackle this problem, we propose a general approach to complete the random missing domain(s) data in real applications. Specifically, we develop a novel multi-domain image completion method that utilizes a generative adversarial network (GAN) with a representational disentanglement scheme to extract shared skeleton encoding and separate flesh encoding across multiple domains. We further illustrate that the learned representation in multi-domain image completion could be leveraged for high-level tasks, e.g., segmentation, by introducing a unified framework consisting of image completion and segmentation with a shared content encoder. The experiments demonstrate consistent performance improvement on three datasets for brain tumor segmentation, prostate segmentation, and facial expression image completion respectively.