论文标题
强大的XOR引理,用于随机查询复杂性
A Strong XOR Lemma for Randomized Query Complexity
论文作者
论文摘要
我们为计算$ xor \ circ g $提供了强大的直接总和定理。具体来说,我们表明,对于每个函数g和每一个$ k \ geq 2 $,计算G的随机查询复杂性,k的k个实例的XOR满足$ \ overline {r} _ \ eps(xor \ circ g g)=θ(k \ edimelline {ryperline {r} {r} _ _ {\ eps/k}(g)(g)(g)(g)(g))$。这匹配了幼稚的成功放大上限,并回答了Blais和Brody的猜想(CCC19)。 由于我们的强直接总和定理,我们给出了一个总函数g,$ r(xor \ circ g)=θ(k \ log(k)\ cdot r(g))$,回答了Ben-David等人(Arxiv:Arxiv:2006.10957v1)的一个空旷问题。
We give a strong direct sum theorem for computing $xor \circ g$. Specifically, we show that for every function g and every $k\geq 2$, the randomized query complexity of computing the xor of k instances of g satisfies $\overline{R}_\eps(xor\circ g) = Θ(k \overline{R}_{\eps/k}(g))$. This matches the naive success amplification upper bound and answers a conjecture of Blais and Brody (CCC19). As a consequence of our strong direct sum theorem, we give a total function g for which $R(xor \circ g) = Θ(k \log(k)\cdot R(g))$, answering an open question from Ben-David et al.(arxiv:2006.10957v1).